Bölünme Kuralları, matematikte sayıların 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,12,13,17,19,25 sayılarına kalansız olarak bölünüp bölünemediklerini bölme işlemi yapmadan anlamaya yardımcı olan kurallarıdır.
1'e bölünme kuralı
Her sayı bölünür.
2'ye bölünme kuralı
Son rakamı çift sayı ise bölünür.Bir tam sayı 2 ile bölünmezse kalan her zaman 1 olur.
3'e bölünme kuralı
Rakamların sayı değerleri toplamı 3 veya üçün katlarıysa bölünür.
4'e bölünme kuralı
Bir sayının birler ve onlar basamağı 00 ya da 4'ün katı ise sayı 4 ile bölünür.
5'e bölünme kuralı
Son rakamı 0 veya 5 ise bölünür
6'ya bölünme kuralı
Sayı hem 2'ye hem 3'e kalansız bölünebiliyorsa 6'ya da bölünür. örneğin:102
7'ye bölünme kuralı
-
Ana madde: 7 ile bölünebilme
Sayının rakamlarının altına birler basamağından başlayarak (sağdan sola doğru) a b c d e f 2 3 1 2 3 1 - + sırasıyla ( 1 3 2 1 3 2 ...) yazılmalı ve şu hesap yapılmalıdır: ( 1.f + 3.e +2.d ) - ( 1.c + 3.b + 2.a ) = 7.k + m ( k, m: tamsayı) Sonuç, 7 veya 7 nin katları ( m = 0 ) olursa, bu sayı 7 ile tam olarak bölünür. Ayrıca bu sayı 10a + b olarak yazıldığında a - 2b sayısı 7'ye bölünüyorsa, asıl sayı 7'ye bölünebilir.
8'e bölünme kuralı
Son üç basamağının oluşturduğu sayı 000 ya da 8 in katı ise bölünür.
9'a bölünme kuralı
Rakamların sayı değerleri toplamı 9 veya dokuzun katlarıysa bölünür.
10'a bölünme kuralı
Son rakamı 0 ise bölünür
11'e bölünme kuralı
Bir sayının 11 ile tam olarak bölünebilmesi için, sayının rakamlarının altına birler basamağından başlayarak sırasıyla +, -, +, -, ... işaretleri yazılır, artılı gruplar kendi arasında ve eksili gruplar kendi arasında toplanır, genel toplamın da 0, 11 veya 11 e bölümünde kalanı 0 olan bir sayı ise 11'e tam bölünür.
12'ye bölünme kuralı
Bir sayının 12'ye tam bölünmesi için, 3 ve 4'e tam olarak bölünmesi gerekir.
13'e bölünme kuralı
Sayıyı x=abcdefg olsun temel basamak çarpanları ise 1,-3,-4 tür 1*(g-d+a)+(-3)*(f-c)+(-4(e-b)
şeklinde daha uzun basamaklı ise bir eksili bir artılı çıkarıp ve toplayıp hepsini toplarız
çıkan sonuç 13 ile tam bölünüyorsa sayıda bölünür eğer kalan varsa bu kalan x sayısınında 13
ile bölümünden kalanıdır.
17'ye bölünme kuralı
Sayıyı X=10a+b şeklinde yazdığımızda a-5b sayısı 17'ye kalansız bölünürse bölünür.
19'a bölünme kuralı
Sayıyı X=10a+b şeklinde yazdığımızda a+2b sayısı 19'a kalansız bölünürsa bölünebilir.
25'e bölünme kuralı
Son iki rakamı 25, 50, 75, veya 00 olmalıdır.
Bu sayılar dışındaki sayılara bölünebilme kuralları; bir sayı, bölüneceği sayının asal çarpanlarına kalansız bölünebiliyorsa o sayıya kalansız bölünür.